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ABSTRACT 1 

Background and Aims Conifer embryos, unlike monocots or dicots, have variable numbers of 2 

cotyledons, even within the same species. Cotyledons form in a single whorl on a dome shaped 3 

embryo. The closely spaced cotyledons are not found outside this ring, indicating a radial control 4 

on where they can form. Polar transport of the hormone auxin affects outgrowth of distinct 5 

cotyledons, but not the radial aspect of the whorl or the within-whorl spacing between 6 

cotyledons. A quantitative model of plant growth regulator patterning is needed to understand the 7 

dynamics of this complex morphogenetic process.  8 

Methods  A two-stage reaction-diffusion model is developed for the spatial patterning of growth 9 

regulators on the embryo surface, with a radial pattern (P1) constraining the shorter-wavelength 10 

cotyledon pattern (P2) to a whorl. These patterns drive 3D morphogenesis by catalyzing local 11 

surface growth. 12 

Key Results Growth driven by P2 generates single whorls across the experimentally observed 13 

range of 2 to 11 cotyledons, as well as the circularly symmetric response to auxin transport 14 

interference. These computations are the first corroboration of earlier theoretical proposals for 15 

hierarchical control of whorl formation. The model generates the linear relation between 16 

cotyledon number and embryo diameter observed experimentally. This accounts for normal 17 

integer cotyledon number selection, as well as the less common cotyledon fusings and splittings 18 

observed experimentally. Flattening of the embryo during development may affect the upward 19 

outgrowth angle of the cotyledons.  20 

Conclusions Cotyledon morphogenesis is more complex geometrically in conifers than in 21 

angiosperms, involving two-dimensional patterning which deforms a surface in 3D. This work 22 
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develops a quantitative framework for understanding the growth and patterning dynamics 1 

involved in conifer cotyledon development, and applies more generally to the morphogenesis of 2 

whorls with many primordia.  3 

 4 

Key words: conifer; Pinaceae; embryogenesis; whorl; cotyledon; pattern formation; 5 

morphogenesis; finite element model; plant growth regulator; reaction-diffusion; auxin; NPA   6 
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INTRODUCTION 1 

Angiosperm monocots and dicots are tightly constrained to form one or two cotyledons, 2 

respectively. By contrast, Pinaceae conifers can have highly variable numbers of cotyledons (nc), 3 

both between and within species (von Aderkas, 2002). Average nc for species are reported as low 4 

as 3 (in Tsuga) and as high as 9 (in Cedrus) (Butts and Buchholz, 1940). Within species, nc 5 

typically ranges ±1 from these averages for zygotic embryos (ibid). For somatic cultures (of 6 

clonal lines), embryos with nc from 3 to 10 are common in Larix, Pseudotsuga and Picea, which 7 

have species averages of 5 to 6 (Harrison and von Aderkas, 2004; Holloway et al., 2016) 8 

The positioning of three or more cotyledons on an embryo is geometrically more 9 

complex than is the case for monocots or dicots, in which the most complex arrangement defines 10 

a one-dimensional line between two cotyledons. By contrast, three or more cotyledons can be 11 

arranged two-dimensionally (on the embryo surface), and patterned either regularly or 12 

irregularly. With this additional complexity, and without the rigid constraint on cotyledon 13 

number seen in angiosperms, conifer cotyledon formation can provide unique insights into the 14 

developmental mechanisms for the spatial positioning of organs. 15 

Among the possibilities for two-dimensional patterning, conifer cotyledons notably do 16 

not form all over the surface, but arise simultaneously in a single whorl (Figure 1C). For the 17 

circular geometries involved – embryos go from a domed (Fig. 1A) to a flattened shape (Fig. 1B) 18 

during cotyledon development – formation of the whorl indicates pattern control along the radial 19 

dimension (Fig. 1E, ‘r’: distance on the surface from the embryo tip or centre, or ‘latitude’ on a 20 

hemisphere). Within this whorl, regular cotyledon-to-cotyledon spacing (Fig. 1C, ‘λ’) indicates 21 

pattern control in the circumferential dimension (Fig. 1E, ‘φ’: ‘longitude’ on the hemisphere). 22 
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The linear variation of nc with diameter expected for regular spacing in a ring (Fig. 1E, black 1 

spots) has been found experimentally in Larix (Harrison and von Aderkas, 2004), Pseudotsuga 2 

and Picea (Holloway et al., 2016), indicating that nc variability reflects embryo-to-embryo 3 

diameter variability. Without radial constraint, the short wavelength cotyledon spacing (λ) would 4 

position cotyledons all over the embryo, which is not observed: arrangement of primordia in a 5 

single whorl involves the combination of a longer spatial scale radial control with a shorter scale 6 

circumferential control.  7 

In conifers, the radial and circumferential aspects of cotyledon outgrowth are 8 

experimentally separable: disrupting transport of the hormone auxin with NPA (1-N-9 

naphthylphthalamic acid) results in loss of circumferential patterning (Larsson et al., 2008; 10 

Hakman et al., 2009), producing circularly-symmetric cup-shaped embryos which lack distinct, 11 

separated cotyledons (Fig. 1D).  12 

In this paper, we develop a quantitative model for conifer cotyledon positioning, in order 13 

to create a framework for understanding the dynamics involved in normal development as well 14 

as in response to NPA treatment. The model is two-stage, with mechanisms for radial positioning 15 

(pattern 1, P1; red, Fig. 1E) and for the circumferential between-cotyledon positioning (pattern 2, 16 

P2; λ, Fig. 1E). The mechanisms are linked hierarchically: P1 control of where the short 17 

wavelength P2 pattern occurs provides the radial constraint necessary for cotyledon whorl 18 

formation. NPA affects P2-patterned cotyledon outgrowth, not the circularly-symmetric P1 19 

component.  20 

To couple the spatial patterning to embryo shape change, the surface is grown in 21 

proportion to the local P1/P2 concentrations; i.e., the P1/P2 mechanism models the dynamic 22 

distribution of plant growth regulators corresponding to whorl morphogenesis. Since size and 23 
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geometry changes of the surface in turn affect spatial patterning, the model is ‘morphodynamic’ 1 

(Salazar-Ciudad et al., 2003), encompassing the full feedback cycle between growth regulator 2 

patterning and surface deformations. The P1 and P2 patterns are stable to this induced growth, as 3 

well as being stable over experimental ranges of embryo diameters and to the geometric 4 

flattening occurring during cotyledon formation.  5 

Turing (1952) proposed the first mathematical model for chemical pattern formation, 6 

which he and subsequent researchers applied to spatial patterning in plant development. His 7 

reaction-diffusion (RD) theory shows how reactions between two or more chemicals 8 

(morphogens) having unequal diffusivities can self-organize stable concentration waves with a 9 

characteristic spacing or wavelength. RD patterns have been confirmed in the development of 10 

both animals (e.g. Sick et al., 2006; Sheth et al., 2012; Raspopovic et al., 2014) and plants (e.g. 11 

Digiuni et al., 2008). RD has been applied to many cases of plant development, both for 12 

‘morphostatic’ (Salazar-Ciudad et al., 2003) patterning on growing domains (e.g. Harrison et al., 13 

1981; Meinhardt, 1982; Jönsson et al., 2005; Digiuni et al., 2008; Fujita et al., 2011) and for 14 

‘morphodynamic’ patterning of growth regulators driving morphogenesis (Harrison and Kolář, 15 

1988; Holloway and Harrison, 1999, 2008). In RD, chemical transport is via simple diffusion 16 

down a concentration gradient.  17 

More recently, it has been discovered that the growth regulator auxin has unique 18 

intercellular transport properties (see review in Friml, 2003). In addition to simple diffusion, 19 

auxin has its own cellular efflux transporter, PIN1. Localization of PIN1 to subregions of the cell 20 

membrane produces a polar auxin transport (PAT). PAT, in conjunction with simple diffusion, 21 

can self-organize auxin concentration patterns (shown analytically, for example, by Jönsson et 22 

al., 2006; Draelants et al., 2013; Farcot and Yuan, 2013). PAT can include a with-the-flux 23 
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localization of PIN1 (a down-the-gradient facilitated diffusion), which has been applied to 1 

canalization and venation (e.g. Mitchison, 1981; Rolland-Lagan and Prusinkiewicz, 2005; 2 

Feugier et al., 2005), or an up-the-gradient localization of PIN1, which has been applied to the 3 

sequential placement of organs in phyllotaxis (e.g. Jönsson, et al., 2006; de Reuille et al., 2006; 4 

Smith et al., 2006). Models of complex auxin patterning, such as for phyllotaxis plus venation, 5 

can include terms for intracellular reactions, simple diffusion, up-the-gradient PAT, and down-6 

the-gradient PAT (e.g. Bayer et al., 2009). Such mechanisms can have very complex dynamics, 7 

since even subsets of the terms -- such as reaction and diffusion (Turing, 1952), or diffusion and 8 

up-the-gradient PAT (e.g. Jönsson, et al., 2006) -- are capable of self-organization.  9 

Previous models of whorled phyllotaxis have focused on the successive formation of 10 

whorls, and have defined organ initiation at a fixed radius R0 from the centre of an apical or 11 

floral meristem (Douady and Couder, 1996; Kitazawa and Fujimoto, 2015). In these models, the 12 

occurrence of whorls (as compared to spirals) depends on R0 and on the timing and size of 13 

sequential primordia initiation. Initiation sites are affected by the positions of older primordia. In 14 

conifer embryos, however, a single whorl of cotyledons forms simultaneously, and the single 15 

whorl is robust to large changes in radius: experimental measurements show whorl radii increase 16 

by about 150 µm over the range of observed nc (Holloway et al., 2016; whorl radius is approx. 17 

125 µm less than embryo radius). This indicates an adaptive self-organizing P1 mechanism (in 18 

the r coordinate) to position the single cotyledon whorl 150 µm closer to the centre in small 19 

embryos with low nc than in large embryos with high nc, and argues against a fixed radius R0 (for 20 

instance set by diffusion of a morphogen from the embryo centre), which would not adapt to 21 

embryo size variation as observed.  22 
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The induction of cup-shaped embryos by NPA treatment indicates a PAT dependence for 1 

the circumferential P2 cotyledon pattern (along the φ coordinate), but not for the circularly 2 

symmetric P1 ring pattern. Turing dynamics in intracellular reactions and simple diffusion can 3 

self-organize pattern in the absence of PAT dynamics. RD is therefore used as a framework for 4 

quantitatively characterizing the PAT-independent P1 pattern. This is similar to the recent 5 

application of RD dynamics to the radial control of shoot apical meristem size (Fujita et al., 6 

2011). Quantifying radial patterning in this way allows us to characterize the dynamics involved 7 

in forming a single whorl robust to the wide range of embryo sizes found in conifers.  8 

For the circumferential P2 pattern, the NPA effect appears to be primarily on the 9 

outgrowth of cotyledons: while most embryos do not grow cotyledons at moderate NPA 10 

concentrations, those that do tend to show normal circumferential spacing (Holloway et al., 11 

2016). This indicates that the outgrowth of distinct cotyledons from the ring is PAT dependent 12 

(perhaps via supply of a critical factor), but that the spacing λ between cotyledons is PAT 13 

independent. In wave terminology, PAT appears to affect P2 amplitude, not its wavelength. We 14 

therefore use a PAT-independent RD mechanism to model self-organization of the P2 cotyledon-15 

cotyledon wavelength λ. The NPA effect on P2 amplitude is modelled as a PAT-dependent 16 

factor that affects whether the RD mechanism can actively form pattern.  17 

While RD can be used to study de novo pattern formation from an unpatterned state, the 18 

more common occurrence in development is for patterns to form on prior patterns, as with the 19 

P1/P2 stages studied here. Harrison et al. (1981) first proposed such hierarchical patterning for 20 

whorl formation in the alga Acetabularia, with subsequent experiments indicating that RD was 21 

involved in circumferential spacing in the whorl (Harrison et al., 1988, 1997). Turing identified 22 

RD parameter conditions for spatial patterns to grow (amplify) from initially uniform 23 
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concentration states (PAT models can be analyzed similarly). We refer to this self-organizing 1 

generation of new pattern as active patterning. RD can also generate active pattern from a pre-2 

patterned state (termed ‘Turing models of the 2
nd

 kind’, Hunding, 1987); in these cases the pre-3 

pattern limits where the RD pattern forms (by controlling where the Turing conditions are met 4 

for active patterning, though linear Turing analysis is an approximation with pre-patterns). For 5 

the conifer model, P1 controls where P2 can actively generate the circumferential cotyledon 6 

pattern. However, when conditions do not support P2 active patterning (e.g. if a critical factor is 7 

affected by NPA reduction of PAT), P2 relaxes to a passive pattern: this is not a uniform 8 

concentration, but rather reflects the radial P1 ring pattern.  9 

The P1/P2 model for patterning and morphogenesis allows us to quantify the dynamic 10 

constraints involved in forming conifer cotyledon whorls. For patterning, these include 11 

constraints on reaction and transport kinetics, the response to NPA interference with PAT, and 12 

how the P1 and P2 stages are coupled. For morphogenesis, these include constraints on P1/P2 13 

catalyzed surface growth, the effect of that growth on patterning, and the effect of 3D embryo 14 

geometry on morphogenesis. The model provides a framework for interpreting current data and 15 

guiding new experiments to understand conifer cotyledon development and the establishment of 16 

whorled structures in general.  17 

 18 

MODEL AND METHODS 19 

As discussed above, the P1 and P2 spatial patterns are each generated by an RD mechanism. The 20 

annular P1 pattern specifies the radial position at which cotyledons form. P1 affects a rate 21 
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constant in the P2 mechanism, constraining the P2 circumferential patterning to this ring. P2 is 1 

morphogenetic, altering 3D shape by locally catalyzing surface growth. 2 

The Brusselator RD mechanism (Prigogine and Lefever, 1968) is used for the P1 pattern: 3 

1

2 21
1 1 1 1 1 1 1 1 1 1 1X

X
a A b B X c X Y d X D X

t


     


    (1a) 4 

1

2 21
1 1 1 1 1 1 1Y

Y
b B X c X Y D Y

t


   


      (1b)  5 

where X1 and Y1 are the concentrations of the spatially-patterned Turing morphogens (subscript 1 6 

for P1). A and B are precursor concentrations; a, b, c, d are reaction rate constants; and the final 7 

terms are for diffusion of X1 and Y1 with diffusivities DX1 and DY1, respectively. X1 self-amplifies 8 

(cX
2
Y term), but this increase is limited by using up Y1. This depletion-type kinetics tends to form 9 

regular patterns in X1 and Y1 very close to predictions from linear analysis (e.g. Lacalli, 1981; 10 

Harrison, 1993; Holloway and Harrison, 1995) and has been used extensively for regular 11 

branching processes in morphogenesis (Harrison and Kolář, 1988; Holloway and Harrison, 1999, 12 

2008; Nagata et al. 2003, 2013; Jönsson et al., 2005; Rozada et al., 2013). Due to this regularity, 13 

the Brusselator was used to model formation of the P1 annulus (Figure 2D,G).  14 

The depletion kinetics of the Brusselator, however, make it unsuitable for a P2 pattern which 15 

is controlled by P1. Without loss of generality, a, b, c, d can be set to unity, and the A and B 16 

concentrations become the only reaction parameters in the model (Nicolis and Prigogine, 1977). 17 

A feedforward from P1 to a P2 Brusselator could be made by identifying one of the P1 18 

morphogens (X1 or Y1) with the A2 or B2 precursors for P2. This P1-patterned feedforward must 19 

be into A2 to produce a passive P2 ring pattern when simulating NPA treatment, since the passive 20 

steady-state of X2 is proportional to A2 and does not depend on B2. However, active patterning 21 
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happens at low A in the Brusselator (Herschkowitz-Kaufman, 1975), which contradicts forming 1 

P2 concentration peaks in the high A2 annulus specified by P1. I.e., such a mechanism cannot 2 

form active normal cotyledon pattern in the same radial position as the passive NPA-treated ring, 3 

as is observed experimentally.  4 

We therefore used an activator-inhibitor kinetic mechanism in which both active and passive 5 

P2 pattern are in-phase with the P1 annulus (Fig. 2E,H). This Gierer-Meinhardt (GM) 6 

mechanism (1972) is given by: 7 

2

2
22 2 2 2

2 2 2 2 2

2

X

X c A X
a A d X D X

t Y


    


     (2a) 8 

2

2 22
2 2 2 2 2 2Y

Y
b B X e Y D Y

t


   


       (2b) 9 

for the morphogens X2 and Y2, with subscript 2 for P2. 10 

P1 to P2 feedforward is implemented by setting  11 

2 1c nX           (3) 12 

since gradients in c2 strongly affect GM pattern localization (Holloway and Harrison, 1995). 13 

Eqns (1) – (3) establish the necessary chemical prepatterns formorphogenesis of a single 14 

simultaneously-initiated whorl of primordia (Fig. 2D-F).  15 

Eqns (1) – (3) were solved by an implementation of the finite element method (FEM) in 16 

Python (version 2.7.3), using the Fenics 1.5 (https://fenicsproject.org/; Logg and Wells, 2010; 17 

Logg et al., 2012; Alnaes et al., 2015), numpy (http://www.numpy.org/) and scipy 18 

(https://www.scipy.org/) libraries. Mayavi2 graphics were used for visualization 19 

(http://mayavi.sourceforge.net/). The initial triangulated mesh specifying the surface was 20 

https://fenicsproject.org/
http://www.numpy.org/
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generated by gmsh 2.5.1 (http://gmsh.info/). Initial shapes were hemispherical caps, specified by 1 

flatness parameter γ between 1 (hemisphere) and 0 (flat disk), see Fig. 1E. Initial surfaces were 2 

defined on between 793 and 801 vertices (exact value depended on radius specified). All 3 

surfaces had 65 boundary (equatorial) vertices, but surfaces with γ < 1 had fewer total vertices 4 

than γ=1 at any given radius, in proportion to the decrease in pole height. Boundary conditions 5 

were fixed-value (Dirichlet), with X and Y concentrations (eqns (1) and (2)) specified as their 6 

passive steady-state values (X0, Y0) on the boundary (equatorial positions). (No-flux boundary 7 

conditions would create maxima at the pole or equator, which would not correspond to the 8 

observed whorls.) 9 

To couple this prepattern to morphogenesis, local growth of the surface was implemented as 10 

in Harrison et al. (2001) and Holloway and Harrison (2008): in each iteration, finite elements 11 

intersecting at a mesh vertex were increased in area proportional to the local X2 concentration; 12 

mesh vertices were then moved along the local normal vector (averaged from the normals of the 13 

neighbouring finite elements) to accommodate this area change (e.g. Fig. 2C,F,I). Vertex 14 

positions were updated simultaneously for the whole surface. Boundary (equatorial) vertices had 15 

fixed positions.  16 

The spatial solutions of eqns (1) (or any pattern forming mechanism) on a hemispherical 17 

geometry are composed of the surface spherical harmonics, Y(m,l), which are polynomials with 18 

m repeated structures in the φ dimension (longitude) and l latitudes at which the solution passes 19 

through the passive steady-state value. Occurrence of the P1 ring depends on the fit between the 20 

domain (embryo) size and the spacing of the chemical patterning mechanism (wavelength). The 21 

parameters in Table 1 (reaction rate constants from Holloway and Harrison, 2008) generate a P1 22 

Y(0,3) ring pattern (e.g. Fig. 2D,G) which is stable over more than a doubling of domain radius, 23 

http://gmsh.info/
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or, equivalently, to a more than halving of pattern spacing. This represents robustness to at least 1 

a factor of two change in reaction or diffusion constants (since these have a less than linear effect 2 

on RD spacing; Harrison, 2011, Ch. 5).  3 

Gierer-Meinhardt (eqns (2)) reaction rate parameters are as in Holloway and Harrison (1995), 4 

except for initial c2 = 0.005 (for t > 0, c2 follows eqn (3)), with diffusivities selected to give a 5 

wavelength λ = 0.52 (calculated from linear analysis), corresponding to 12 P2 primordia at radius 6 

1 (and γ = 1). The feedforward constant n (eqn (3)) scales X1 to keep P2 in the active patterning 7 

region of the linear parameter space. NPA treatment is simulated by reduction of d2, which shuts 8 

off active P2 patterning without strongly affecting wavelength (Holloway and Harrison, 1995). 9 

Linear analysis predicts this qualitative active-to-passive change for decreasing d2; numerical 10 

simulations were used to find this boundary value for the nonlinear system eqns (1, 2). Local 11 

growth is proportional to X2 (parameter cg), and is calculated once for every 50 iterations (of size 12 

Δt) of the reaction-diffusion solver. Simulations were run for 30,000 iterations. 13 

 14 

RESULTS 15 

Whorl formation: P1 constraint of P2 16 

Lack of constraint: An essential feature of single whorl formation is that a relatively short 17 

wavelength spacing (the inter-cotyledon λ shown in Fig. 1) is constrained to a ring. In the 18 

absence of a radial (or latitudinal) constraint, a mechanism with such a short wavelength would 19 

generate pattern all over the domain. This is illustrated in Fig. 2A-C, in which active patterning 20 

is turned off in the P1 Brusselator (by setting diffusivities DX1 and DY1 to zero), resulting in 21 

unpatterned, uniform X1 and Y1 concentrations (Fig. 2A). Active patterning in P2 is then spatially 22 
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unconstrained, and concentration peaks form all over the surface (Fig. 2B). If this P2 pattern 1 

catalyzes surface expansion, outgrowths occur over the whole domain (Fig. 2C): this is not 2 

observed in conifer cotyledon morphogenesis (or single whorl morphogenesis in general).  3 

 Normal patterning and morphogenesis: With P1 actively patterning and generating a 4 

relatively long wavelength annular pattern (Fig. 2D), feedforward (eqn (3)) constrains the short 5 

wavelength P2 to form in a whorl and not over the centre of the domain (Fig. 2E). Growth 6 

catalyzed by P2 generates the regularly-spaced whorl of primordia associated with normal 7 

cotyledon morphogenesis (Fig. 2F). Eqns (1) – (3) provide a framework for the dynamics needed 8 

for the morphogenesis of a single simultaneous whorl of primordia.  9 

 10 

NPA effect on P2 patterning 11 

Cup-shaped morphogenesis (spontaneous or due to NPA treatment) is associated with loss of P2 12 

patterning (lack of distinct cotyledon outgrowth). With normal active P1 patterning (Fig. 2G), 13 

loss of active P2 patterning reverts to a passive steady-state reflecting the P1 annular pattern 14 

(Fig. 2H). The PAT-dependent shut-off of P2 self-organization is modelled via reduction of the 15 

decay parameter d2, from 0.21 (normal) to 0.14 (NPA treated). Growth catalyzed by the resulting 16 

annular passive P2 pattern generates the circularly symmetric morphogenesis of cup-shaped 17 

embryos (Fig. 2I). Partial reduction of d2, to 0.18, produces active P2 pattern, but at lower 18 

amplitude than normal. This corresponds to the decreased amplitude outgrowth but relatively 19 

unaffected P2 spacing observed experimentally under moderate NPA treatments (Holloway et 20 

al., 2016).  21 

   22 
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Effect of geometry on morphogenesis 1 

Cotyledons in vivo tend to point upwards (Fig. 1C), and this upwards tendency is retained even 2 

in cup-shaped embryos lacking cotyledons (Fig. 1D). The radial location of the P1 ring on the 3 

dome could potentially affect this outgrowth angle, with higher latitude rings giving smaller 4 

angles between the outgrowth and the z-axis. The single-ring solution of the P1 eqns (1) on a 5 

hemispherical cap is the annular Y(0,3) surface spherical harmonic (Fig. 2D,G), which has a 6 

characteristic inset from the equator. Higher latitude rings could arise for higher-order harmonics 7 

(e.g. Y(0,7)), but this would also produce multiple rings, which are not seen in normal conifer 8 

development. 9 

Geometry could also contribute to upward growth. Flattening of a hemispherical 10 

geometry, as seen during conifer embryogenesis (Fig. 1A to 1B), decreases the angles between 11 

the z-axis and normal vectors on the surface. Therefore, P1 patterning on a flattened dome 12 

should direct more upwards growth than on a hemisphere. To test this geometric effect, we ran 13 

series of computations at different values of γ, the parameter specifying dome flatness (varying 14 

between 1 for a hemisphere and 0 for a flat disk; see Fig. 1E and Nagata et al., 2013). Figure 3 15 

compares morphogenesis from hemispherical initial shapes (Fig. 3A,B) to increasingly flat initial 16 

shapes (Fig. 3C,D to Fig. 3E,F). Decreasing γ decreases the outgrowth angle from the z-axis, 17 

producing closer fits to observations, both for cotyledon outgrowth and for NPA-induced cups. 18 

This indicates that establishment of the P1 pattern on geometries intermediate between a 19 

hemisphere (γ = 1) and a flattened disk (γ = 0), i.e. patterning after the dome stage (Fig. 1A), 20 

could contribute to the observed upwards growth.  21 

 22 
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Linear relation between primordia number and diameter 1 

A characteristic wavelength, λ, for P2 spacing within the P1 ring implies a linear relationship 2 

between domain diameter, d, and the number of primordia, nc: 3 

( ) cd n b  
       (4) 4 

where b/2 is the inset of the ring from the equator. This relation is seen experimentally (Harrison 5 

and von Aderkas, 2004; Holloway et al., 2016). For the P1/P2 RD simulations, Figure 4 shows 6 

this linear increase in radius with primordia number. The linear trend is observed at different γ 7 

values, and with or without P2-catalyzed growth (Table 2; p < 0.05 for all regressions).  8 

The single ring of primordia is stable across the 2 to 11 cotyledons observed 9 

experimentally. This stability of whorl formation depends on P1 pattern stability with respect to 10 

radius increase. Spatial solutions of dynamic mechanisms such as eqns (1) depend on domain 11 

size, with a progression from lower to higher complexity patterns as size increases. At small 12 

radius, the domain size is too small for the annular Y(0,3) spherical harmonic: P1 forms a lower-13 

order, pole-high Y(0,1) pattern in these cases. P2 can form nc of 2 to 4 on these small-radius P1 14 

patterns (Table 2, yellow). This is consistent with previous results, in which we observed whorl 15 

patterns up to nc = 6 for a single Brusselator pattern-former on a Y(0,1) fixed pre-pattern 16 

(Holloway and Harrison, 2008). For larger radii, however, the Y(0,3) annular pattern generated 17 

by the dynamic P1 mechanism (as in Fig. 2 D,G) is critical for stabilizing P2 whorl formation (as 18 

compared to ‘spots all over’, e.g. Fig. 2B). The P1 annulus stabilizes whorls to the upper end of 19 

the experimentally observed range: up to nc = 11 is shown in Table 2 (green and blue); nc = 12, 20 

13, of which single cases were observed in Holloway et al. (2016), can also be generated. At 21 

higher radii than these, P1 begins to transition to a multiple ring Y(0,7) pattern, which would 22 
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correspond to radially-nested P2 whorls, which are not seen in normal development. Simulation 1 

of NPA treatment, decreasing d2 to shut off active P2 patterning, gave circularly symmetric 2 

morphologies for all radii in Fig. 4.  3 

 4 

Variations in patterning 5 

Transitions between distinct patterns can be gradual for P1 and P2. In Table 2, for instance, the 6 

P1 transition between the Y(0,1) pole-high and Y(0,3) annular patterns occurs over a range of 7 

radii (green cells), with the Y(0,3) polar minima becoming more distinct as radius increases. For 8 

P2, radii between those shown in Table 2 can give mixed patterns, resulting in either splittings 9 

(e.g. an initial nc = 4 going to nc = 5, Figure 5A) or fusions (long circumferentially-extended 10 

maxima which fail to resolve into distinct primordia, Fig. 5B). Splittings are seen 11 

experimentally, for example with an embryo showing 4 cotyledons on an initial measurement 12 

showing 5 cotyledons a week later. Fusions are also observed, where, for example, space for 2 13 

cotyledons is occupied by a single broad structure (Fig. 5C). The simulations indicate that such 14 

indeterminate nc could be a natural consequence of the radial dependence of the P2 pattern, i.e. 15 

that these embryos are at a transitional size between radii with distinct integer nc.  16 

NPA treatment tends to abolish outgrowth of distinct cotyledons, but in rare cases 17 

vestigial ‘bumps’ can be observed along the rims of the cup-shaped embryos (Holloway et al., 18 

2016). Since NPA treatment appears to reduce P2 amplitude without altering the P2 spacing λ, 19 

these bumps may be due to a remaining very low amplitude P2 pattern during their development. 20 

Fig. 5D shows that in cases where P2 is not actively patterning, and has a steady state which will 21 

follow the P1 annular pattern, transient circumferential pattern can still be observed at early 22 
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stages, which could contribute to vestigial bumps prior to the pattern fully relaxing to the annular 1 

steady state.         2 

  3 

DISCUSSION 4 

Cotyledon morphogenesis in conifers is complex, with positioning and outgrowth controlled in 5 

radial and circumferential directions on a flattening dome geometry. Fundamental questions in 6 

this process include: how are cotyledons constrained radially to form in a whorl; how are 7 

cotyledons evenly spaced circumferentially within that whorl; what is the role of auxin in 8 

cotyledon formation; and how do spatial patterning dynamics affect the morphology of the 9 

cotyledon crown in early embryos. We developed a dynamic model of pattern formation and 10 

growth in 3D to investigate these questions.  11 

 Induction of cup-shaped morphogenesis by NPA treatment suggests that an underlying 12 

PAT-independent patterning mechanism, P1, sets the radial position of the cotyledon whorl. This 13 

ring pattern is robust - even in NPA-treated embryos showing partial cotyledon growth or 14 

embryos with missing cotyledons (gaps), outgrowth occurs at a clear radius from the tip (Larsson 15 

et al., 2008; Holloway et al., 2016). The consistent formation of whorls in conifer cotyledon 16 

development depends on the stability of this single-ring pattern solution to changes in domain 17 

size, embryo geometry, and mechanism parameters (e.g. reaction rates, transport rates, 18 

potentially mechanical properties). The size stability of the whorl pattern is notable in the 19 

broader developmental context, given that within-species conifer embryo sizes are far more 20 

variable (std. dev./mean ≈ 30% for diameters; Holloway et al., 2016) than those in Drosophila 21 

(std. dev./mean ≈ 8% for lengths; Holloway et al., 2006), a model organism intensively studied 22 
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for such pattern scaling to variable size (e.g. Houchmandzadeh et al., 2002; He et al., 2015). On 1 

flattening dome geometries, the single-ring whorl pattern corresponds to the Y(0,3) spherical 2 

harmonic. We have shown that a reaction-diffusion P1 mechanism (the Brusselator) can stabilize 3 

single whorls across the range of 2 to 11 cotyledons observed experimentally. In particular, 4 

Y(0,3) P1 solutions are critical in maintaining single whorls at larger diameters. Our simulations 5 

indicate that P1 ring stabilization is important for diameters associated with nc > 4; this is highly 6 

applicable to many common conifers, in which species averages are nc = 5 and above (Butts and 7 

Buchholz, 1940).  8 

   To constrain cotyledon formation to the ring, P1 needs a feedforward control on the 9 

short-wavelength P2 pattern. The formation of P1 and P2 patterns in-phase in the whorl is 10 

consistent with GM activator-inhibitor kinetics for P2, and not with Brusselator depletion 11 

kinetics. P1 is coupled to P2 via the X1 morphogen affecting the X2 self-reinforcement rate 12 

parameter c2. Active pattern formation by the GM P2 mechanism produces even spacing between 13 

primordia within the P1 ring. This is the first computed confirmation that a hierarchical double-14 

RD mechanism can generate single whorl morphogenesis on a dome, as first suggested by 15 

Harrison et al. (1981).  16 

The loss of distinct cotyledon outgrowth with NPA treatment indicates a PAT effect on 17 

P2 pattern amplitude. This is modelled as an effect on active vs. passive patterning, with NPA 18 

treatment (decrease of PAT) decreasing parameter d2. At low d2, active circumferential 19 

patterning dies out and the resulting passive steady-state of P2 reflects the underlying P1 ring 20 

pattern (Fig. 2H). Turing analysis shows how d2 decrease causes this loss of self-organization; 21 

the decreased decay could also be associated with a pooling of unpatterned P2 morphogen in the 22 

P1 ring.  23 
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 NPA-induced reversion of a distinct cotyledon pattern to a ring pattern supports the two-1 

stage P1/P2 model over a one-stage RD model. For a single Brusselator, Nagata et al. (2013) 2 

found the stability conditions for different pattern harmonics on spherical caps. Transitions from 3 

cotyledon-like patterns, Y(nc, 1), to the annular Y(0,3) would require different specific variations 4 

in parameters for each nc. In comparison, loss of active patterning in P2 can be effected over a 5 

range of values for any of the parameters in eqns (2), more consistent with a systemic NPA 6 

treatment reliably converting all potential nc (or all diameters, given eqn (4)) to Y(0,3).  7 

 P1 control constrains a potentially 2D P2 pattern (all over the surface) into a quasi-1D 8 

pattern in a ring. This produces the linear dependence between inter-cotyledon spacing λ and 9 

embryo diameter (eqn (4)) observed experimentally (Harrison and von Aderkas, 2004; Holloway 10 

et al., 2016). In such a ring arrangement, each increment of the whorl circumference by the inter-11 

cotyledon spacing allows another cotyledon to fit in. Table 2 shows radii for each integer nc in 12 

the experimentally observed range. Since radius can vary continuously, radii intermediate to 13 

those shown in Table 2 can produce mixed nc: the cotyledon fusions or splittings observed 14 

experimentally could be due to the diameter-nc dependence contained in eqn (4).  15 

 Morphogenetically, P2-driven growth generates the evenly spaced primordia of normal 16 

cotyledon morphogenesis, as well as the circularly symmetric outgrowth of NPA-induced cup-17 

shaped morphogenesis. The pattern formation is stable to this induced growth. Computations on 18 

different embryo geometries (dome flatness γ) suggest that P1/P2 cotyledon positioning occurs 19 

during flattening, after the early dome stage: decreasing γ from 1 (hemispherical) decreases the 20 

angle between outgrowth and the z-axis, generating increasingly upward-pointing primordia 21 

which more closely match experimental observations.  22 
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 Visualization of growth regulator patterning in conifer embryos is rudimentary compared 1 

to Arabidopsis; the model provides a quantitative framework for interpreting the data currently 2 

available and guiding new experiments. For instance, new experiments in auxin labelling could 3 

clarify whether auxin localizes to the P1 ring, indicating a localized PAT delivery of the P2 4 

‘amplitude factor’ and perhaps some dependence of PAT on P1; or whether auxin is more 5 

ubiquitous at these stages, and loss of PAT would produce a more generic loss of the P2 6 

‘amplitude factor’ across the embryo. While the molecular identity of the X2 growth catalyst is 7 

unknown at this point, the model indicates that it is patterned by activator-inhibitor kinetics, as 8 

found earlier in plants for trichome patterning (Digiuni et al., 2008) and in shoot apical 9 

meristems (Fujita et al., 2011).  10 

The dynamic mechanism developed here for conifer cotyledons may apply more 11 

generally to single whorl formation in development, or to successive simultaneously-forming 12 

whorls (independent of earlier primordia position) such as vegetative growth in Acetabularia 13 

(Dumais and Harrison, 2000) or Equisetum. These phenomena are in contrast to phyllotactic 14 

whorls formed by successively initiated primordia (e.g. Douady and Couder, 1996; Kitazawa and 15 

Fujimoto, 2015), and also to the PAT self-organization model of floral whorls, in which earlier 16 

organs (sepals) affect the positioning of later organs (van Mourik et al., 2012). The stability of 17 

the P1/P2 system over a large size range is especially applicable to simultaneous whorls with 18 

large numbers of primordia. In these cases, the short spacing between primordia relative to 19 

domain size requires a radial constraint to form in a whorl, and not have patterning all over the 20 

available space. While current data supports RD patterning for both P1 and P2 in conifer 21 

cotyledon whorls, the current model establishes more general constraints for whorl formation 22 

which could be realized with other pattern forming mechanisms, such as PAT. In particular, the 23 
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current model establishes constraints on the linkage between the radial and circumferential 1 

patterning systems, the coupling to growth, and the stability of the patterns to embryo size 2 

variability and geometric changes during morphogenesis: these apply to any mechanism for 3 

regular spacing, RD or otherwise. 4 

 In this broader context, the current characterization of the two-stage process in conifer 5 

cotyledon development shows parallels with previous findings of multi-component mechanisms 6 

with separable effects (and dependences on PAT) in different dimensions. These include results 7 

in tomato and Arabidopsis, in which exogenous application of auxin could alter circumferential 8 

patterning on the shoot, but not within a critical radial distance of the meristem (Reinhardt et al., 9 

2000);  the PIN1 dependence of floral initiation compared to the partial PIN1 independence of 10 

leaf initiation (Guenot et al., 2012); the separable surface and inward PAT flows found in the 11 

shoot apex (Furutani et al., 2014); and the PAT-dependent lateral and PAT-independent medial 12 

components of gynoecial development (Larsson et al., 2014).  13 

Conifer polycotyledony offers a unique system for studying developmental mechanisms 14 

for the positioning of organs. Development of a 3D finite element model of conifer cotyledon 15 

whorl formation has allowed us to study the dynamics involved in this complex morphogenetic 16 

process. This clarifies the role of the radial patterning (P1) and its stability over the size ranges 17 

found experimentally; the constraint of cotyledons to this ring; the spacing of cotyledons within 18 

the ring (P2 pattern); and the loss of P2 patterning with NPA treatment. This quantitative model 19 

for the dynamics of growth regulator patterning and consequent morphogenesis provides a 20 

synthesis of current data and can serve as a framework to guide future experiments into the 21 

molecules and mechanisms involved in conifer cotyledon development, with implications for 22 

whorl formation in general.  23 
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LEGENDS TO FIGURES 1 

FIG. 1. Cotyledon patterning in conifer development. (A) An early dome-shaped embryo. (B) At 2 

a later stage, embryos have flattened and cotyledons are just beginning to appear (red arrows). 3 

(C) Cotyledons subsequently grow out, in a whorled (ring) pattern, with a distinct inter-4 

cotyledon spacing, λ. Scale bar is 200 µm. (D) Cup-shaped embryos, with no distinct cotyledons, 5 

can occur spontaneously or be induced by NPA treatment (blocking polar auxin transport). This 6 

indicates two linked patterning events (E): the first (pattern P1, red) controlling the radius (r 7 

coordinate) of the cotyledon ring (or its ‘latitude’ on the dome); the second (pattern P2, black 8 

spots) controlling the spacing, λ, between cotyledons in the ring (along φ, the circumferential 9 

coordinate, or ‘longitude’ on the dome). P2 patterning is disrupted in cup-shaped embryos. γ 10 

denotes the flatness of the embryo (as defined in Nagata et al., 2013: γ = 1, hemisphere; γ = 0, 11 

flat disk). (A-C), (E) adapted from Holloway et al. (2016), (D) from Harrison and von Aderkas 12 

(2004), with permission. (A-D) Larch (Larix) embryos shown.  13 

 14 

FIG. 2. Two-stage model for conifer cotyledon morphogenesis. Top row, spatial pattern 1 (P1), 15 

colour-mapped for morphogen X1; middle row, spatial pattern 2 (P2), colour-mapped for 16 

morphogen X2; bottom row, 3D shape generated by X2-catalyzed growth (colour-mapped for X2). 17 

The top two rows are hemispherical surfaces, the shapes on the bottom row grow from initial 18 

hemispheres. Red outlines are in the x-y plane; white arrow, z-axis. P1 and P2 patterns are 19 

generated by reaction-diffusion (RD) mechanisms (eqns (1) and (2), respectively); X1 and X2 20 

concentrations are shown colour-mapped from blue (lowest concentration) to red (highest 21 

concentration). The X1 concentration (top row) affects a production rate constant in P2 (eqn (3)), 22 

constraining where P2 forms (middle row). (A-C) When P1 is not actively patterned, X1 (A) and 23 
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Y1 revert to uniform steady-state concentrations. This allows the short wavelength P2 pattern to 1 

form all over the domain (B), catalyzing a ‘spots-all-over’ bumpy morphogenesis (C), which is 2 

not seen in conifer embryogenesis. (D-F) When P1 is actively patterned, X1 forms a ring defining 3 

the radial position of the cotyledon whorl (D). This (by eqn (3)) constrains P2 to form only 4 

within the ring (E). Outgrowth of regularly spaced primordia corresponds to normal cotyledon 5 

morphogenesis (F). (G-I) If P2 is not actively patterning, it has a steady-state pattern (H) which 6 

follows that of P1 (G), and outgrowth is circularly symmetric (I), like NPA-treated cup-shaped 7 

morphogenesis.  8 

 9 

FIG. 3. The effect of geometry on patterning and morphogenesis. Top row, normal 10 

morphogenesis (both P1 and P2 actively patterning); bottom row, NPA-treated cup 11 

morphogenesis (P1 actively patterning, P2 not actively patterning). Colour-map, red outline and 12 

white arrow as in Fig. 2. (A, B) Growth starting from hemispherical initial shapes, γ = 1.0 (see 13 

Fig. 1E legend). (C-E) Progressively flattened domains: (C, D) γ = 0.8; (E, F) γ = 0.6, shown to 14 

scale. The radius increase as γ decreases keeps the number of primordia (6, here) constant. As 15 

the domain flattens, the angle between the z-axis (pole) and the P1 ring decreases, directing the 16 

primordia upwards, more closely matching the observed morphogenesis (Fig. 1C). This 17 

corresponds to cotyledons being positioned during tip flattening, after the dome stage (Fig. 1A) 18 

of embryogenesis. 19 

 20 

FIG. 4. Linear relation between number of primordia (nc) and radius, as predicted from eqn (4) 21 

and corresponding to the trend seen experimentally (Harrison and von Aderkas, 2004; Holloway 22 
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et al., 2016). Top-view shapes, colour-mapped for X2 concentration, shown to scale. The P1 ring 1 

stabilizes formation of a single whorl of primordia over the observed range of 2 to 11 cotyledons 2 

(Holloway et al, 2016). γ = 0.8 with X2-catalyzed growth shown, see Table 2 for the linear 3 

relation at other geometries. 4 

 5 

FIG. 5. Variation in patterns. The model can generate some of the anomalous morphologies seen 6 

experimentally. (A) Concentration peak splitting, in this case from an earlier pattern of 4 peaks 7 

(left) to a later pattern of 5 peaks (right), corresponds to readjustments seen experimentally, 8 

where additional cotyledons are sometimes seen a week after the earliest count. (B) Peak fusions, 9 

where a ring with space for, in this case, between 5 and 6 peaks, has several peaks ‘smeared’ 10 

together, corresponding to fused or extra-width cotyledons sometimes observed experimentally 11 

(C; from Harrison and von Aderkas, 2004, with permission; scale bar is 250 µm). Such cases of 12 

indistinct peak number tend to occur at transitional radii between distinct integer peak numbers 13 

(i.e. between the shapes shown in Fig. 4). (D) Transient pattern in early stages of an ‘NPA-14 

treatment’ simulation (at later stages, this passive P2 pattern is distributed in a smooth ring). 15 

Such transient pattern could correspond to the ‘bumpy cup’ morphology sometimes observed in 16 

NPA-treated embryos, where the cup rim is not smooth (Holloway et al., 2016).   17 
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TABLES 1 

TABLE 1. Model parameters 2 

Eqns (1) Eqns (2) Other 

a1 = 0.01 a2 = 0.0006 n = 0.00125 

b1 = 1.5 b2 = 0.025 cg = 0.001 

c1 = 1.8 c2 = 0.005 (initial) Δt = 0.01 

d1 = 0.07 d2 (normal) = 0.21; d2 (NPA) = 0.14 number of vertices (γ=1) ~ 800 

 e2 = 0.27  

A1 = 10.0 A2 = 0.4  

B1 = 1.0 B2 = 0.4  

DX1 = 0.01 DX2 = 0.0004  

DY1 = 0.1 DY2 = 0.008  

 3 

TABLE 2. Initial radii at particular number of primordia nc, for different tip flatness γ. Yellow – 4 

Y(0,1) P1 pattern; green – faint Y(0,3) P1 pattern; blue – sharp Y(0,3) P1 pattern. No growth: 5 

fixed hemispherical cap geometry for all time ≥ 0. Growth: same initial geometry, but with X2-6 

catalyzed surface growth for time > 0.  7 

nc: 2 3 4 5 6 7 8 9 10 11 

γ=1 

growth 

 

0.2 

 

0.25 

 

0.325 

 

0.375 

 

0.4 

 

0.5 

 

0.6 

 

0.65 

 

0.7 

 

0.8 

no growth 0.25 0.275 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.85 

γ=0.8 

growth 

 

0.3 

 

0.35 

 

0.4 

 

0.45 

 

0.55 

 

0.6 

 

0.65 

 

0.8 

 

0.85 

 

0.95 

no growth 0.3 0.35 0.4 0.45 0.55 0.6 0.7 0.79 0.8 0.95 

γ=0.6 

growth 

 

0.3 

 

0.4 

 

0.45 

 

0.5 

 

0.6 

 

0.665 

 

0.7 

 

0.8 

 

0.9 

 

1.0 

no growth 0.35 0.4 0.5 0.55 0.59 0.65 0.75 0.9 0.95 1.0 
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